Thursday, December 23, 2010

The woolly-haired Shuffler: Splendid Insulation

It is cold outside. Then again: there will be a white Christmas, which is largely nice. All that snow led me to choose a wintery scene for my long overdue update of Furahan animals. The update follows the same pattern as previous ones: if I show a new animal, an old one leaves the scene, and that is exactly what has happened. After all, if the Furaha Project is ever to become a book, there should be things in it that are not freely available on the internet.


Click to enlarge; copyright Gert van Dijk

Here is part of the map of Furaha showing the usual covering of snow in Winter for the Northern hemisphere. This is part of the area where the woolly-haired Shuffler lives.

Click to enlarge; copyright Gert van Dijk

You will find the Shuffler on the land page, but here it is again. I could not resist adding some additional information here. At first glance you may wonder where the woolly hairs are, as the animal looks somewhat naked. Well, the hairs are underneath.

There are various ways in which animals can combat heat loss in a cold environment. Behavioural solutions are to stay indoors or sleep through the winter. There are anatomical tricks as well; a good principle is to be as round as possible with as few protruding parts as possible, in order to get a small surface area for a given volume. So, expect small ears, short tails and thick legs for animals in cold climes. A second anatomical trick is to be large, as it is easier for a large animal to conserve heat. There are metabolic and circulatory tricks as well, but a good theme is insulation. Layers and layers of fat wrapped around the more costly parts of the body will help, and as an aside these can store food as well. One of the best insulating materials is air. Fur works because the hairs trap air near the body, preventing the freezing effects of wind to reach warm parts of the body. Fur on Earth works quite well, and various animals have such sophisticated fur designs that they can withstand horrible conditions. Just consider hair that traps sunlight, leading the warming radiation into the body; hairs that are fairly thick but hollow, so they trap even more air; or consider fur made of layers of hairs with different characteristics. But such furs can still get wet, and while even that can be solved -think of polar bears- there is another way to protect against wind chill, and that is the ways humans do it.

Humans? Naked apes? I am talking about clothing. Animal pelts must have been among the first items of clothing, and among women of a certain class, a certain age and a certain cultural background fur coats are still in vogue (I cannot help but think -and sometimes say- that all fur coats are second-hand clothes, and that they invariably looked much better on the first owner). Fur coats work, but modern polar clothes are a miracle of ingenuity. They invariably have fibres to trap air much as hairs in furs do. But there is usually an outer layer of wind-breaking material to stop the trapped air from mingling with the really cold outside air. Animals don't have that, for the simple reason that it would not be easy to enclose large areas of air inside the body (oh well, Furahan tetrapterates do, but that is another story).

Once again, humans solved that particular riddle. Some brilliant Eskimo / Inuit must have realised one day that coats made of fur work even better when you wear the furry side of the pelt against your skin instead of on the outside. That was a stroke of genius, I think, but it is not listed among other great humans inventions such as fire, wheels and gossiping (the probable reason for the evolution of speech). I expect that women who like fur coats do not know this, and suspect they would ignore it anyway.

That Eskimo's idea is behind the fur coat of the Shuffler. Its skin forms folds, and the inside of the fold is covered in woolly hairs, while the outside is devoid of hair. The fold is dead, in fact. This might be as near as the 'Eskimo Invention' as biological evolution can get starting with hair on the outside of a body. The main downside is that investing in large amounts of skin and hair for just one season's worth of protection is costly in metabolic terms, so I played with alternative ideas, such as letting them keep their folds all year. Or perhaps they eat the skin when it falls off, in a rather unappetising manner.

---------------------------------

As you can see, I made some other changes to the web site as well:
I added a new book, on Warren Fahy's 'Fragment'. This is probably the only fake book in the entire New Hades catalogue of fake books that will one day likely be turned into a real book!. It is on the book page, of course.
The list of links has been reworked too, see the 'about' page. Snaiad is gone, but I will put the link back again when Nemo chooses to find a new host. Then again, Nereus is there now...
The illustration on the site's front page has been changed as well; no new items there, but I think it looks better now.

Finally, I have written too many posts on this blog: it keeps me from actually painting new Furahan life forms. Next year, I will probably reduce the frequency of posts to perhaps once every two weeks. We'll see. I do have some ideas for good subjects though. Meanwhile, please consider telling all women with fur coats, except for the ones you really like -the women, not the coats-, that they should wear their coats with the fur on the inside.

Friday, December 10, 2010

Furaha on io9


A few days ago this blog was mentioned on io9, under the heading Mad Science. The article was entitled "An intensive, multi-year study of realistic alien life". There was a definite spike in the number of people who visited my sites afterwards. Welcome new readers!

I was a bit doubtful about the 'Mad Scientist' bit, but what can I say? There is some truth in it; after all, I have been known to work my way through texts on the optical limits of compound eyes, to see whether I could somehow get around the conventional thought that such eyes would have to have a diameter of one meter to obtain a resolution as good as the human one. Is that geeky? I now think th`t computer science might hold an answer, and if you want me to write a post on that subject, you know what you are...

All right, I admit it: such activities might conceivably be considered geeky by some. In fact, according to Annalee Newitz, who wrote the post in question, my blog is "a treasure trove of biogeekery". Now that is a word to remember. Annalee must be a related soul, as she wrote: "This kind of intense, charmingly maniacal worldbuilding warms the screaming void at the center of my nerdy heart." Well, Annalee, it's nice to be appreciated, and please come again if you need rewarming!

Wednesday, December 8, 2010

An xenobiological conference call

Just a short post this time. If you read this blog, it is a safe bet that you are interested in speculative biology, astrobiology, xenobiology and/or exobiology. I mention all four terms as they are about more or less different things. 'Speculative biology' seems to stand apart from the others; it is about any kind of biology that is not about real living beings, here, there, then or now. It can be about alternative evolution on Earth, such as dinosaurs in the present or about evolution on Earth in the future. Xenobiology, exobiology and astrobiology are restricted to unearthly life. The words 'exobiology' and 'xenobiology' are clearly older, but the newcomer 'astrobiology' seems to have won the day. Personally, I prefer 'exobiology', in part because it evokes 'exotic' and in part because I am linguistically conservative. 'Xenobiology' literally refers to the biology of 'strangers', and so it comes very close, etymologically, to 'alien biology'. 'Astrobiology' is literally about life on stars, and while I am willing to listen to any hypothesis about life, life on or in stars seems unlikely. But I will not be difficult about this; after all, 'astronomy' deals with more than just stars. Essentially xeno-, exo- and astrobiology are all about the same subject.

So, would you wish to go to a xenobiological conference? The full title is '18th International Congress of Xenobiology and Planetary Biology'. The program looks interesting: there will be talks on topics such as 'Xenophages and other new treatments and their impact on Human physiology'. As if Earth viruses and bacteria aren't enough, modified or with their wholly natural charm, you can now get treated with alien organisms. It's completely harmless, really! The introduction of Earth lifeforms in alien ecologies is always good for a controversy, so the talk on 'Introduction and Establishment of Terrestrial Insectoids in Rigel Kentaurus' is bound to draw a large audience. Then again, what do we care about Rigel Kentaurus?

You can read more on the conference on the following website. You will have to be patient though, as the conference will be held on 16-21 September, 2206. Aha; while there are serious conferences on astrobiology, this one is fictitious. The website is beautifully made, and if you ever been to a scientific conference, you will know that this is an excellent parody. It is all there!: there is a social program, a timetable, information about the venue and the hotel, and a list of sponsors. Whoever made this knew what he or she was doing. The author can be found by stripping the web address, and that yields something else altogether.

The website is in Finnish, a language I can recognise but not understand. Luckily, there is a copyright name there: credit to whom it is due, which in this case is Sampsa Rydman. If you work your way through the various options in the menu, you will find some interesting ones. One definitely worth a visit is 'Xenobiologia', proving that some Finnish words are easy. But from then on I would advise you to use Google's translation services. You will find a page with interesting pencil drawings on it, of which I will show two.

Click to enlarge; copyright Sampsa Rydman

This creature is a Löyhkähaahkaja. So what does Google make of the accompanying text? Here it is, without embellishments: "This is a great size (4-5 feet), carnivorous plants attract prey lemullaan intolerable. Although it elääkin entire life rooted in one place, its great tarttumaelimellä a wide freedom of movement. Löyhkähaahkajat spread and multiply rihmajuurakkoaan along."

Well, reading that definitely evokes a 'sense of wonder'. I think that we are looking at a sessile but mobile life form. Other life forms on the page seem to have elements of plants as well as animals, a feature they share with Furahan mixomorphs. The limits of sessile life forms perhaps deserve a post of their own, some day.

Click to enlarge; copyright Sampsa Rydman

And this is a Haaskahyppiäinen. "The kolmeraajaisten hyppiäisten sect belonging to the plains inmate is about 20 cents higher, munimalla growing insect-like vikkeläliikkeinen hajoittajaeläin. They are found largely blue-green leaves and raipparepsukoiden hills and mustaruohotasangoilta."

Right. I thought as much. But look at it: it appears to be a triradial life form, and I have a definite soft spot for radial animals, particularly ones with complex motor skills.

Have a look at the other animals yourself. They are probably more graphically pleasant than biologically plausible, but every once in a while that is admissible. Mind you, if you wish to have a look at the other pages, turn off the translation, or else you will not see the illustrations on the pages. There is a nice planetary map here. I rather liked the images advocating 'robot equality'. I hasten to say that I do not object to treating robots humanely (of course not!) but I hope that does not mean they fall under the heading of 'speculative biology'. Dear me.

I will keep it at this. This is a nice site! I would have liked to have seen more animals, but I guess I will have to wait for the conference...

Sunday, November 28, 2010

Walking without Legs

Pardon? Is walking without legs possible? Well, if you stretch the definition a little...

There are quite a few terrestrial animals on Earth that have no legs; earthworms, legless lizards and particularly snakes come to mind. These are not evolutionary misfits whose leglessness will be their doom any day now. Snakes have been around for some 150 million years, after all. Limblessness in legless lizards seems to have evolved at least 8 times, also suggesting that 'not having a leg to stand on' is not necessarily a bad thing. It is probably a very good thing if your life style requires moving around in confined spaces where legs might hold you back, such as underground, in very dense growth and probably in crevasses between rocks. In fact, you may well wonder whether legless animals might be universal, found on many worlds across the universe.

If so, would all 'serpentiformes' or 'ophimorphs' (take your pick) move in the same way? That is debatable, as there may be one or two possible gaits that do not seem to be in use on Earth. How do animals without legs move on Earth? There are animals whose body length can vary, such as earthworms, but let's only look at those with a fixed body length, such as snakes. You can find more on that using Wikipedia etc., but here is a short summary.

The internet did not let me down in a search for interesting material. In the past I have found that some of my biomechanical ideas to design interesting life forms had also been invented by others designing robots, such as tetropters (radial flyers). In this case it was the other way around, and I came across a mechanical invention that might perhaps be 'biologified'. I found it on the website of the biorobotics laboratory of the Carnegie Mellon School of computer science, where they have lots of interesting material on the design of robotic snakes (there are other robot snake designers, but this site seems to cover all aspects).


Click to enlarge; copyright Gert van Dijk

Click to enlarge; source here

The basic element of robotic and live snakes is a segment (vertebrates are just as segmental as arthropods; the segments are just less apparent form the outside). In the picture above each segment is connected to the next with a universal joint, allowing movement up and down and sideways. The robotic snakes seem to have joints with just one axis of rotation (either up-down or sideways), but these alternate on consecutive joints. There is no movement along the longitudinal axis of the segments. Well, in animals there is almost always a bit of leeway, but not a lot; it's certainly not as if a segment could rotate 10 or 20 degrees along a longitudinal axis. It is tempting to adapt the design to allow more longitudinal rotation, and it would increase the 'alienness' of the design. (We need a word to describe how 'alien' an animal is compared to 'life as we know it'; 'alienosity'?)

Anyway, Earth's snakes can move in various ways. There is the 'rectilinear' mode, in which a bit of skin on the belly of the snake is lifted, moved forward, and put back on the ground again. The next bit of skin does the same thing but slightly out of phase, so you end up with a wave of skin rippling backwards along the belly of the beast. As the ripples push against the immobile earth, the snake moves forward. Think about this: part of the body, while lifted from the ground, swings forwards with respect to the centre of gravity of the body, and when it is on the ground it swings backwards: that is a description of what a leg does, if not what a leg is. A fine distinction, but an interesting one: do you define walking by its functional characteristics, or by the body parts that carry out the function? I tend to prefer the first option, but the consequence would be that snakes walk, and that departs too much from common use of 'walking'.




A very interesting snake gait is 'sidewinding'. Here, the snake lifts an entire segment of its body from the ground, moves it forwards, and puts it down again. You get the picture: a walking analogue again. The robotic snake does it too, with waves travelling down the body both in the up and down and sideways directions. In real life it is quite difficult to get a good understanding of how this works using just diagrams, but the videos shown here might help. Sidewinding provides snakes with their fastest way of locomotion: it is the 'running' of the snake world.




Now we get to the creative part: a gait snakes do not use. The robot's body is moved into a curve, so it lies in a plane. Now imagine that you change the direction of curvature a bit, so both ends of the animal would be lifted from the ground. That is not going to happen, as the uplifted ends of the body will fall towards the ground. The result is a C-shaped curve that rolls forward, a bit as how you would move a log by rolling it over the ground. I was struck by the creative beauty of this solution.

But before people trot off to design rolling metaserpents for their own worlds, they should think about why Earth's snakes don't do this. Rolling along the longitudinal axis of the body will cause the animals' head to spin quite literally. The poor animal will have difficulty in keeping its bearings. Regular readers may remember that there was a similar problem with cernuation. I wouldn't say this form of locomotion, which the robot designers called 'rolling', is impossible for animals, but the animal better have very sophisticated vestibular and equilibrium systems. Alternatively, or additioanlly, the head could do its own counter rotation, in the same way cernuating animals could temporarily keep their head still. Spinning ballerinas also rotate their head opposite their body to keep it still in space, and they are not alien (perhaps a tiny bit).




Here is another example of what 'rolling' can do: the designers have actually been able to make their robot climb a tree! Spectacular, isn't it?




And finally, a robot that is not very prominently displayed on their site. They call it the 'skin drive', and about the only information is that it uses its entire skin to move. From looking at the video, it seems to have flexible rubbery skin, and underneath that there must be series of elements that can be stuck out radially and retracted again. I guess that waves of extraction and retraction march backwards across the body, as if you would push successive fingers against a sheet of rubber. If these fingertips find enough traction against the ground, they will stay in place, and the body as a while will be pushed forwards. It is a bit like 'rectilinear' snake movement, but not exactly the same. I wonder where the inventors will take it, or where its evolution will lead to.

Sunday, November 14, 2010

Furaha Swamp Scene II



If this scene looks a bit familiar, that is because I posted previous versions of it as well, in November 2009. This version is updated though, and so is still worth viewing, or so I hope. The end is a bit rough: the 'Fish' is visible for a short while only, which is intentional, and so I thought I could get away with a limited amount of detail. There is a better quality version on the site: simply go to the plant page and select the arrox tree.

Click to enlarge; copyright plant image Gert van Dijk

Here is a short 'making of'. The plants were all designed with XFrog, a program aimed wholly at structures that branch and grow, i.e., plants. The various rules and settings can be quite complex, but it allows very good control over the characteristics of any plant you create with it. There are not many good plant editors about. One of the few other candidates is the plant editor inside Vue, but that is unfortunately geared towards changing and mutating existing plants, and does not allow the creation of a plant from scratch. Vue has the advantage that it allows its own plants to move in a breeze, which certainly adds to the liveliness of a scene.
The image above shows one of the flowering plants in the swamp scene, as it looks inside XFrog.

Click to enlarge

The next stage is to produce a suitable environment, for which I use Vue Infinite. Basically you start with a 'terrain', which in this case is the ground with some grooves in it to hold streams. Vue allows the user to define 'ecosystems' as collections of 3D objects that are placed according to rules. For instance, one such system could be limited to high points in the terrain. In this swamp scene the arrox trees only grow on such relatively high ground. The marsh growths, with reeds etc., are limited to medium height zones, while in this case hardly anything grows in the lowest ones. That is on purpose, as they would be obscured by muddy water anyway.
Once the playing filed is ready, the camera is set to fly through the scene, and to produce a ray-traced image 24 times a second, or more. A simple scene lasting 4 seconds may take about 10 hours, so a short film of one minute takes many nights of lonely processing (for the computer, that is; I will be asleep).
And then it is a matter of turning the individual frames into films, for which I use VirtualDub. The resulting clips are much too large to show on the internet so they have to be compressed, at the loss of quality. Adding sound and titles adds to the fun, for which I use Adobe's Premiere (Elements).

And there we are; a Furahan scene that does not actually look that alien. One reason for this is that plants may yield less obvious visual 'alienness' than animals. Regardless , I could not resist putting in an animal at the end. a specimen of a 'Fishes IV' species. I do not yet know how to make the parts of their body move, something that would add greatly to the visual quality of the film. But this is the level of my animation skills at present. I do not think that I will try to become good at it, as there is too little time for that.

Click to enlarge. From left to right, typical examples of species from the Fishes IV, V and VI groups. Copyright Gert van Dijk


But I guess that some of you will want to know more about the various 'Fishes', that are just called that by Furahan people because the word came easily, not because it is biologically correct. In this sense the early Horizonists seem to have gone for the old custom of labelling just about any type of water animal a 'Fish'. 'Crayfish' and 'starfish' come to mind as well. I will not go into the early development of Fishes I, II and II, that follow one another in geological time. Not so for Fishes IV, V and VI, shown above in a rough sketch. Here is a quote from an authoritative source, Nyoroge's "Broad Stokes":

"From this point on hexapod evolution becomes more complex. ‘Fishes III’ gave rise to three new groups, ‘Fishes IV, V and VI’, all of which had three pairs of fins. This has caused a great deal of confusion. There are two schools of thought trying to explain the ‘Fishes III Division’, as the debate has become known. The ‘Hexaphile School’ holds that Fishes IV, V and VI evolved separately from multifinned ancestors, and have three pairs of limbs in common, because three pairs of limbs are innately superior to any other number, without actually explaining in much detail why this should be the case. The ‘Monophyletic School’ contends that all three groups have three pairs simply because they all stem from a single ancestor. This is somewhat surprising in view of other differences between Fishes IV, V and VI, which do not suggest a common ancestry. The ‘Contingency View’, which has been gaining strength lately, holds that there is no innate advantage in any number of limbs, and that all three groups have the same number of limbs by accident. Molecular Cladisticians keep silent about the matter, due to a lack of clear evidence one way or the other."

Tuesday, November 2, 2010

Radial Robots

'Radial robots'; for a title that isn't too bad. I was tempted to add words with 'r' such as 'rampaging' or 'ravaging', but I resisted, as that ran the risk of rather ruining the effect, rendering it ridiculous.

Back to the matter at hand. When I first thought of a radial walking pattern, resulting in Furahan spidrids, I was content to visualise the gait by writing some programmes in Matlab. The results are shown on the Furaha page, and some were featured in the blog as well (here and here). I never imagined I would see really see spidrids walk. Literally, of course, I never will, unless creative bioengineering kits become available quickly, which is unlikely. But walking robots have emerged on the scene since I thought of the spidrids, and among them radial leg designs, as opposed to bilateral symmetry, seem to be quite popular. You can even buy kits to build one yourself. As these designs probably evolved independently, it is interesting to see how parallel these forms of evolution have become: convergent speculation? I therefore surveyed the internet to see whether their anatomy and gaits resembled those of Furahan spidrids. As most of the robots out there seem to be hexapods, I made a quick hexapod version of my originally octapod spidrids (if you need information on spidrids, go to the land section of the Furaha site and select 'walking with...'). A mutation, if you will.



Mutated spidrid; copyright Gert van Dijk

And here it is. I cannot call it a spidrid any longer, as that name evoked spiders, and therefore eight legs. Suggestions are welcome. The beasty walks with the simplest possible gait: that is a double tripod gait, in which the six legs are divided into two groups of three. The three legs of a group move in unison, and the two groups are exactly out of phase. Provided that each leg touches the ground longer than it is off it, there will always be at least three lags on the ground (either that or six). This gait, together with sprawling legs, provides excellent stability. As discussed previously, this is useful for very small animals, soupy atmospheres or a very low walking velocity. It also doesn't require subtle neural control, making it suitable for today's rather dumb robots. It is also a bit boring, which is why my spidrids walk with different gaits, but that is another matter.


Click to enlarge; copyright Gert van Dijk

Next, a scheme to show how the joint anatomy works. Spidrids are very simple: there is a joint at the 'hip', in which the entire leg can rotate clockwise or anti-clockwise. The rotation axis is vertical, indicated by a shiny metal axis and a red arrow. All other joints are simple hinges allowing the segments of the leg to be stretched or bent, and the axes are horizontal, indicated by more shiny axes and blue arrows. Now that the basic spidrid anatomy and gait are clear, it is time to see whether the robot creators have evolved completely different approaches, or whether they evolved the same ideas.




The first video is of a hexapod robot from this YouTube source. As soon as you see it move you will see that its leg anatomy is exactly that of the spidrid: there is one vertical axis at the hip, and the leg itself only contains horizontal axes. The gait is simple as well, in that the legs move in two sets of three, just like the animation above. I like the clunking sound it makes, as if a whole battalion of Cybermen comes clunking down the street. It does one thing my spidrid animations do not (as yet): it changes gait, in the sense that it moves from a circular rotation to walking again (I could have programmed that, but that is a lot of work...).




Here is another one (source here), and this one has a more biological feel to it, in the sense that the movements seem smoother and less mechanical. It does have the same basic anatomy though. Its gaits seem more diverse.




Just to show that radial robots are not restricted to six legs, here is an eight-legged one (source here), more reminiscent of the original spidrids. With eight legs there are many ways to move the legs, and the risks of falling are diminished, as it is easier to spread weight-bearing evenly around the centre of gravity.


Click to enlarge; source here

Finally, just a look at this one suggest a radical departure from the norm. It has four legs, but that is not the point, as it still clearly has a radial anatomy. The legs do not seem to be attached in the usual fashion: where they touch the body the joint seems to be a simple hinge with a horizontal axis. In fact, all its joints seem to have horizontal axes. So how does it move its legs in more than one direction? How can it walk if all its legs can do is stretch and shorten? The answer lies in its design: this robot is fundamentally different. It is part of a project in which the robot has an internal representation of its body, so it can learn to move once more after its legs have been damaged. In short, it is a lot more intelligent than its dumb brethren. If you want interesting movements, always add a brain (an insect type of brain will do).




And this video shows how it moves: it tilts its body, and that takes the place of (anti)clockwise leg rotations. By varying the tilt of its body the reach of its legs becomes much more varied than with an immobile body. In fact, with the anatomy it has, body tilt is the only way forward (pun intended). What a clever design! I love it.

Does this mean that the 'usual' radial design is flawed? I think not. There are good reasons why this design was invented several times, for robots as well as spidrids: it is simple and allows good mobility. Now, if the robots develop more interesting and sophisticated gaits, we are in business: model spidrids in your own home; what more could you wish for?

Saturday, October 23, 2010

Epona Reconnaissance Flight (Epona V)

The Epona Project was, or perhaps is, probably the first serious attempt to build an fictional biosphere from scratch. There is still a website, definitely worth watching. Admittedly, the project has stopped in the sense that no new life forms have been developed for a long time, nor is that likely to happen. But the website is being added to, and I return to it from time to time. The last blog entry on Epona is to be found here, while another one that shows the same scene as is shown in the film below is right here. This time, I used Vue Infinite (version 7.5) to produce a film of almost one minute duration.

How does this work? Well, first of all, there were the life forms to consider. Steven Hanly had modelled them in the past, and it proved possible to port some of his models into the Vue environment. The 'uther' you see flying in the scene is entirely Stephen's doing. The plants could not be used directly, as present-day computer imagery requires more detail than was available when he first designed the models. They were therefore designed anew, using XFrog for the large leaves of the pagoda trees and for all small plants. The stems of the large pagoda tress were done in Vue Infinite. The trees were assembled in Vue, and Vue's 'ecosystem' feature was used to create a terrain with a stream running through it. Then just imagine that a 5-second fragment of film may need some 34 hours to render.

After that, a bit of sound was added, a process I have hardly any experience with. I hope the result is not too jarring.

Anyway, there we are: perhaps the film is about a robot drone taking a look on an Eponan archipelago, covered by a pagoda forest. There is a larger version on YouTube. The original film on my computer is much better; I wish I knew more about optimising quality while compressing a video...